
SAM File Merging - Version 3.5

H. Schellman

June 14, 2000

Introduction

We need to be able to merge input files in order to maintain reasonable files
sizes in the D0 data store. Merging files themselves is reasonably easy, the
D0 data model has separate read and write modules which can open and
close files at different rates. Merging metadata is somewhat more difficult as
input files may not have exactly the same metadata. In this note I consider
the various metadata considerations.

At the end I have a plan which actually has several stages.

1. Make it possible to store files with several parents by making run/event
tags (but not number of events) some null value and relying on lum
blocks and parentage to keep the information. We need a minimal
functionality for this before we can write merged rootuples.

2. Explore the possibility to have intermediate files in sam which are used
in the merging process but never written into the robot.

3. At some future date, make it possible for users to put in some more
complicated information (such as run range for input/output).

1 Merging

1.1 What merging means

By file merging, I mean any process which takes a set of input files and
produces a set of output files which have a many input to one output file
relationship.

1



This can be

• a special step in processing where the only operation performed is to
create a bigger file from smaller ones, or it can be

• a natural part of other processing, for example a job which reads in 10
input files in DST format and produces 1 output file in Root format.

• It can also be a selection, where 10 input files in DST format have 1/10
events selected to produce a single input file in DST format.

In all these cases, what sam needs to know is what files were merged and
what did the merging.

In this memo, I concentrate on the database structure and the sam store
description files, not the framework interface. In the end almost all of this
should be automated via the framework interface as that will prevent user
error.

D0 file i/o supports concepts like closing the output file every N file
boundaries and can ensure that output files have a unique set of parents.
This is good as file lineages are much easier to trace if a child file cannot be
partly from one and partly from another parent.

1.2 What merge does not mean

D0 will in fact combine files in two ways, which I will call parallel and serial.
A parallel combination is done when events from two different streams (MC
and 0-bias) are combined event by event into a single event stream. I do not
discuss this case in this memo except to suggest that ’merge-type’ information
is probably needed in the file database to distinguish this case from the more
common serial merge in which events are read in sequentially from files and
written out to a single file in the order they were read in.

2 Splitting

Splitting can also have two meanings.

selection A particular set of events within a file is ’selected’ and written to
a given selection stream. Generally the whole input file is read and
one output per selected stream is written. The luminosity info for the

2



input file is the same as for the output files if they are closed on input
file boundaries.

division An input files is too large, it is subdivided into N smaller chunks
each of which corresponds to a chunk of the input file. In this case
the luminosity information is not the same and needs to be subdivided
among the divisions.

In HEP experiments splitting normally means the selection of subsam-
ples, not the division of a large file into smaller pieces.

We need to have methods for doing both of these. For this memo, selection
is considered and we assume that output files are closed on (possibly multiple)
input file boundaries. In this case an input file can have multiple children but
each child has a unique selection stream. An output file can have multiple
input files as parents.
Do we have a concept of selection stream? Any given file can have

multiple such selections applied sequentially and we need to keep track of
this. It can be done through the code versions but it may be much clearer if
it is stored as a DB entry on its own.

3 Life of a file

Let’s look at W triggers.

3.1 Data logging

These will be written to the exclusive electron+MET and some electron+MET+other
streams by the data logger. The electron+MET stream is around 1% of all
events and the electron+MET+other streams are 2%. The W sample thus
comes from several streams which will be logging data at ∼1 Hz or 250kB/sec
each. For 1GB files this means an output file per stream every hour or so.

Each W file will span around 60 luminosity blocks and will be closed and
opened by the data logger on lum block boundaries.

A data taking run will probably last several hours so one can expect that
a stream that writes 1% of the data will produce several files per run.

Assuming that we run 50% of the time during a year, there will be around
2,500 electron+MET and 5,000 electron+MET+other files per year.

3



3.2 The farm

On the farm, once a run ends a W processing job will be fired up and will run
on N processors, each getting W files from a sam consumer shared between
the N processors. The processing reads in one raw file and produces one or
more output files. These output files can be:

DBG full reco output - 250kB

DST most useful reco output - 120kB

XXX special events - streams for hot samples

TMB thumbnail output - 10kB

Rtpl ntuple output - 5 kB

each of these has the input file as a parent but some are a lot smaller
than others and will need to be merged into larger files before they go in the
robot.

In principle some of these files could be ’merged’ by the reco process itself,
by having reco read 2 and write one file. Given that we may wish to have
reco do splitting of data via a Level 4 trigger, and that the files on any given
worker node are almost certain to be widely separated in luminosity block
and perhaps from different runs, this cannot be the only form of merging.

On the completion of processing for each input file, the output files and
their metadata are written to one of the 72 GB disk buffers on the farms for
merging. Each different data tier goes to a different directory.

3.3 The merge area

We wish to merge several input files and write them back into sam as a single
file. It is desirable that those files be as close to in time order as possible.
This minimizes confusion for users and decreases the number of DB accesses
needed to get constants. D0 in run I and CDF in run II imposed absolute
ordering on files when they were merged. I consider such ordering to be a
very desirable feature and do not see any real problems in achieving it.

In such a standalone merge step after a separate processing step we can
do one of two things.

4



1. Declare the reconstructed files to sam but not store them in encp.
Make a project consisting of convenient subsets of those files. Then
run a normal framework job which uses sam to access the reconstructed
files in the normal fashion and merges them. The merge would then
consider the reconstructed files as the ’parents’ and the merged file
which actually goes into sam is the ’child’. The parentage is then:

raw − > reconstructed − > merged
and there would be separate processing information for the reconstruc-
tion and merging phases. This method can make full use of the sam
framework and process tracking machinery and is the one I prefer.

2. Construct a list of reco files in the merge area, use the framework to
do a file merge.

If one has the metadata files produced by the reco jobs on the worker
nodes, one can write a simple merge script which takes the metadata
for each file and produces metadata for the merged file.

One can then store back into sam.

The parentage is:

raw − > merged

This method saves a dummy file save in SAM but makes it harder to
track the merge code version numbers as the ’application/version’ info
are for reco, not for the merge. It also prevents the merge step from
using the sam project and framework tools.

One now has a set of reconstructed files of the right size stored on disk
with correct parentage. These merged reco files are then stored into sam via
a sam store command.

For 1 GB merged files

DBG full reco output - 1-1

DST most useful reco output - 2-1

XXX special events - streams for hot samples 10-1

TMB thumbnail output - 25-1

5



RTPL ntuple output - 50-1

If we avoid crossing run boundaries, the TMB and RTPL files will prob-
ably be smaller that 1 GB.

3.4 Later selection

The W ID group will process the DST files using the freight train on d0mino
with a selection which requires the official W trigger and a PT cut on the
electron at 15 GeV to produce the ’official’ W sample. This official sample
may be 20% of the reco sample and probably involve reading 5 files and
writing 1. At this point one has ∼ 500 files for the electron+MET stream
and ∼ 1000 for the electron+MET+other stream. This is a dataset of tier
’DST’ but with a documented selection applied to it.

These output files are part of a selection stream ’Wofficial’, a subset of
these events might go into a tighter selection stream ’Wtight’.

Because these subsets only have selections applied to them, if the output
files are closed on inputfile boundaries,Co the parentage and luminosity book-
keeping should be straightforward.

3.5 Ntuple creation

The W group will then process the ’official’ W sample to get an official W
ntuple in ROOT format consisting of 5kB of information per event. This
reduces to perhaps 25 electron+MET and 50 electron+MET+other files, it
could be less but one may wish to have each file correspond to a fixed trigger
or streaming list.

3.6 Ntuple selection

The W group might want to make a smaller ntuple with, for example, the
W mass analysis selections. This would be done via another selection into
stream ’Wmass’.

This sample then has tier Ntuple and 2 selections ’Wofficial’ and ’Wmass’
applied to it.

6



4 Determining the luminosity for the W anal-
ysis

In the end one needs to find the luminosity for the W analysis.

• One takes theRTPL files and finds the complete list of theirW-select
DST parents,

• one then takes theW-select DST parents and finds theirW-stream
DST parents,

• one then takes theW-stream DST files and finds their ghostly reco
parents

• one then takes the reco parents and finds their RAW parents

The luminosity for the W sample is the sum of the luminosities for all of
the RAW parents.

If the electron+MET and electron+MET+other streams come up with
different lists of raw luminosity blocks due to processing losses, only the lum
blocks which are in both lists are valid - the user will have to take that list
of valid lum blocks and remove any events which are from bad ones from the
data sample.

One can assume that people will be doing such queries on a reasonably
regular basis, perhaps as an overnight job.

If at any step in this chain a selection or merge of a set of files yields 0
events, a file with 0 events but with parents must be entered into the DB
and included in any further family tree - this is probably not a real problem
for the high rate W sample but it will be for rarer events, which do not show
up in every file.

The file tracking needs to be able to include such ghost files and include
them in the parentage of children. If one uses SAM, I think this is almost
guaranteed. If one does not - the odds are very high that one will get burned.

5 Metadata relevant to merging

The goal of file merge metadata is to allow one to find the parents of any
merged file and hence the processing history and luminosity associated with

7



that file. Some pieces of metadata are very useful here while others are not
and different merging models may wish to require or ignore consistency in
the important metadata.

I propose that the user be able to tell sam whether consistency is required
or not.

I list the metadata objects most likely to be useful in using a merged file.
How they should be treated depends on the application and one should be
able to specify a treatment option depending on what one is doing. One can
constrain, ignore, list or save a range when confronted with metadata from
different parent files.

One might wish to require that the parent files have the same trigger list
or reco version. Each merged file might have the lum block range of the
parent files. It is also useful to see if any given event can possibly be in a file
by checking the event/run number range for the file itself.

Here is a partial list of the metadata which is relevant in file merging and
the reasonable behaviour for each type.

lum min, lum max Should be min and max for the input files.

The luminosity blocks are unique and can be used to determine infor-
mation like run and event ranges. If lum blocks are handled correctly
the rest can be derived.

run number If same, retain, if not set a general flag showing it is merged.

run type Probably want to be able to constrain this.

first event, last event First and last events, if the run number is the
same, the merged file should have the minimum of the first events and
the maximum of the last. (Are these for read or written?). If the file
contains several runs, us the merged flag.

event count Should be the event count for the final merged file. Could be
0. File should still be declared to sam.

The lum information is most important and should contain the run/lum
block range for the input files. The event info is less important and should
perhaps refer to the output file.

Because one does have the file parentage and that is the real information
about the files origins, all of this information is useful but not absolutely

8



necessary. However, it may be very useful in shortening the time of a file
query or constants download. The parentage gives you the lum/run/event
range for the INPUT files. For constants downloads, you only need the
lum range for the file itself. Since lum ranges are unique and already exist,
they should be updated for merged files to contain the lum range for the
events actually present in that file (as calculated by the framework job) or if
unknown, the lum range for the input files.

5.1 more information

Parent application name, application version Generally want to constrain
to same or similar.

Parent physicaldatastream May be same, may be different

logicaldatastream What do we do with this?

trigger stream ???

Parent trigger list Is merging across trigger list boundaries wise? This
should be an optional constraint.

Parent Monte Carlo generation variables (not on the DB picture I have but
should be required to be consistent.

Parent Data Tier

Each of the above is information which may or may not be required to
be consistent in a file merge. For consistent information, the child metadata
inherits from the parent. For inconsistent information there are choices as to
how to construct the metadata for the child file.

As with any sam process one also needs to store metadata about the
process which did the merging. If the merge was run as a sam project,
then the pid alone can point sam to the rest of the metadata. But if the
merging is not done by a project, then things like the ApplicationVersion,
ApplicationName etc. of the merge process need to be logged when the file
goes into sam.

The bottom line is that the outputs of the merging process must have suf-
ficient associated information to build a decription file that sam can use to
correctly associate them with their parents. This means a list of the parents,

9



information about the merge process itself and rules for combining the meta-
data of the parents to make metadata for the child files. This information
should be passed to sam by the description file used in sam store.

6 Producing MetaData for a merged file

The metadata for a merged file are derived from the metadata for the parents
+ the metadata for the merging process itself. Most of the mechanisms for
this are already in place, although the current ’sam store’ description files do
not yet accept a list of filenames as parents.

Here is a possible description for a merged file. One has the usual file
metadata and then hints to sam on how to handle the metadata inherited
from the parents.

TheFile = MergedFile(
name = "outputfilename",
parentnames = {"file1","file2","file3","file4"},
start_time = "...",
end_time = "...",
ApplicationName=mergorama, // tells you the merge process info
ApplicationVersion=pmc03.01.00 //
sizeK = 1345222,
MergeRunNumber = "Merged",
MergePhysical_Stream = "Constrain",
MergeApplicationName = "Constrain",
MergeApplicationVersion = "SQL:%preco03.07%"
MergeLumBlocks = "MinMax"
MergeLogicalStream = "Constrain"
MergeTriggerList = "Constrain"

Here there are several hints on how to construct the metadata which have
been specified by the user.

First cases where the metadata are obvious once one has decided whether
or not to make a constraint.

Constrain means require consistency and put the consistent value in for
the child file.

Merged means general merge with metadata set to a null value.

10



Then cases where one needs to decide exactly what to store. These differ
as the storage type in the database differs.

MinMax takes the minimum and maximum,

List stores a list of possible values

SQL: This is a bit advanced - means constrain to a certain subset, then
store the constraint.

For a first pass, the Contrain,Merged,MinMax, and List behaviours
are needed.

7 Empty files

In file merges it is often important to include an empty file in the merge
records, because it still has associated luminosity data.

8 Merge/split

In principle a single process can both merge and split, leading to a file which
has multiple parents and children. We may wish to disallow this and have
0-length intermediate files which keep the parentage 1-many, many-1.

9 Plan of attack

1. Identify any changes needed in the DB schema itself. Unless run ranges
are added, I do not see any changes.

2. Check that sam can support the declaration of intermediate ’ghost’ files
in a parentage chain. What is exact command syntax for this?

3. Identify changes needed in the sam store description file.

• NOW: add support for lists of parents

• NOW: confirm that merge process information can be added prop-
erly even if the merge is not a sam ’project’ run.

• LATER: add support for constraints

11



• LATER: add support for controls in creating output file metadata
in unconstrained case.

For a start, one could not implement constraints, use inheritance where
possible, use min/max for lum as suggested above and flag any ambigu-
ous metadata as ’go ask your father’.

4. Change the sam store description file interface to support merging

5. Test and document

6. Put into the framework SAM interface

7. Do a test from RAW − > ntuple

8. Test performance of 5 level parentage queries.

12


